Intelligent Light and FieldView

Wind Leaders Addressing Future Data Needs - Atmosphere to Electrons Initiative

I had the honor and pleasure to participate in the Atmosphere to Electrons Workshop hosted by the Department of Energy, Office of Energy Efficiency and Renewable Energy.  The focus of the initiative is on the use of computational simulation to improve understanding and performance predictions from the microscale to the mesoscale.


 

FieldView image published in paper: "Turbulence Transport Phenomena in the Wakes of Wind Turbines", Earl Duque, Intelligent Light; Pankaj Jha and Jessica Bashioum and Sven Schmitz, The Pennsylvania State University

The event brought together leaders from the wind energy community including National Labs, Universities and Industry. The purpose was to map out the direction for simulating the performance of a wind turbine farm; capturing the temporal and spatial scales from meso-scale (kilometer and hours) down to the airfoil boundary layer scales (micron and milliseconds). Morning and afternoon sessions began with a topical plenary talk followed by working groups focused on the computation and modeling needs at different scales such as Park Scale, Turbine Scale and Airfoil Scale.

 Wind Farm - FieldView image as published in "Wind Farm Simulations Using a Full Rotor Model for Wind Turbines", J. Sitaraman, D. Mavriplis, E. Duque
AIAA Paper 2014-1086

For me, it was clear that it will be essential to include in-situ data analysis methods and file I/O standards in order to work with the tremendous volumes of data that will be created and processed. This was recognized by many at the meeting.  The use of in-situ methods with FieldView and VisIt offers solutions to those grappling with the current data analysis bottlenecks. 

With the high-caliber people from government, academia, and industry converging on this challenging problem, the A2E initiative is making progress toward vast improvements in the understanding of the complex physics of wind flowing into and through wind farms.  DOE sees the potential to improve wind farm efficiency by 20% while drastically reducing operating costs for wind energy producers.

Related Research Papers:

No Compromise CFD with On-Demand HPC
Newsletter: The Future of Wind Energy CFD - DOE's ...